JVM垃圾收集器汇总学习

达芬奇密码2018-07-03 09:10

   由于公司内部广泛使用java,所以本文章是对JVM垃圾收集器进行汇总学习。如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现。

如下图是基于Sun HotSpot虚拟机1.6版本的所有收集器:

 

图一 HotSpot JVM1.6的垃圾收集器

图一中,如果两个垃圾收集器之间有连线,则表示可以搭配使用,上半部分展示的是新生代的垃圾收集器,下半部分展示的是年老代的垃圾收集器。

1.1 Serial收集器

   Seria收集器是最基本、历史最悠久的垃圾收集器,使用复制算法,曾经是JDK1.3.1之前新生代唯一的垃圾收集器。

Serial是一个单线程的收集器,并且它的单线程的意义,不仅仅是只会使用一个CPU或一条线程去完成垃圾收集工作,更重要的是在进行垃圾收集的同时,必须暂停其他所有的工作线程,直到垃圾收集结束,Sun把这种行为称之为”Stop The World”。 对于“Stop The World”带给用户的不良体验,虚拟机的设计者们表示完全理解,但也表示非常委屈:“你妈妈在给你打扫房间的时候,肯定也会让你老老实实地在椅子上或者房间外待着,如果她一边打扫,你一边乱扔纸屑,这房间还能打扫完?”这确实是一个合情合理的矛盾,虽然垃圾收集这项工作听起来和打扫房间属于一个性质的,但实际上肯定还要比打扫房间复杂得多啊!

图二 Serial / Serial Old收集器运行示意图

   Serial垃圾收集器虽然在收集垃圾过程中需要暂停所有其他的工作线程,但是它简单高效,对于限定单个CPU环境来说,没有线程交互的开销,可以获得最高的单线程垃圾收集效率,因此Serial垃圾收集器依然是java虚拟机运行在Client模式下默认的新生代垃圾收集器。

1.2 ParNew收集器

   ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio -XX:PretenureSizeThreshold-XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。ParNew收集器的工作过程如图三所示。

图三 ParNew / Serial Old 收集器运行示意图

   ParNew收集器除了多线程收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。在JDK 1.5时期,HotSpot推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器——CMS收集器(Concurrent Mark Sweep,本文稍后将详细介绍这款收集器),这款收集器是HotSpot虚拟机中第一款真正意义上的并发(Concurrent)收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作,用前面那个例子的话来说,就是做到了在你的妈妈打扫房间的时候你还能一边往地上扔纸屑。

不幸的是,CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作,所以在JDK 1.5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。ParNew收集器也是使用-XX:+UseConcMarkSweepGC选项后的默认新生代收集器,也可以使用-XX:+UseParNewGC选项来强制指定它。

ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。当然,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多(譬如32个,现在CPU动辄就4核加超线程,服务器超过32个逻辑CPU的情况越来越多了)的环境下,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

ParNew收集器开始,后面还会接触到几款并发和并行的收集器。在大家可能产生疑惑之前,有必要先解释两个名词:并发和并行。这两个名词都是并发编程中的概念,在谈论垃圾收集器的上下文语境中,它们可以解释如下:

并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。

并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。

1.3 Parallel Scavenge收集器

   Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器……看上去和ParNew都一样,那它有什么特别之处呢?

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量 = 运行用户代码时间 /(运行用户代码时间 + 垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

    Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽可能地保证内存回收花费的时间不超过设定值。不过大家不要认为如果把这个参数的值设置得稍小一点就能使得系统的垃圾收集速度变得更快,GC停顿时间缩短是以牺牲吞吐量和新生代空间来换取的:系统把新生代调小一些,收集300MB新生代肯定比收集500MB快吧,这也直接导致垃圾收集发生得更频繁一些,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

GCTimeRatio参数的值应当是一个大于0且小于100的整数,也就是垃圾收集时间占总时间的比率,相当于是吞吐量的倒数。如果把此参数设置为19,那允许的最大GC时间就占总时间的5%(即1 /1+19)),默认值为99,就是允许最大1%(即1 /1+99))的垃圾收集时间。

   由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得关注。这是一个开关参数,当这个参数打开之后,就不需要手工指定新生代的大小(-Xmn)、EdenSurvivor区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics)。如果读者对于收集器运作原来不太了解,手工优化存在困难的时候,使用Parallel Scavenge收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成将是一个不错的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用MaxGCPauseMillis参数(更关注最大停顿时间)或GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别。ParNew收集器的工作过程如图四所示。

图四 Parallel Scavenge / Parallel Old收集器运行示意图

1.4  Serial Old 收集器

   Serial OldSerial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。这两点都将在后面的内容中详细讲解。Serial Old收集器的工作过程如图五所示。


图五 Serial / Serial Old收集器运行示意图 

1.5 Parallel Old收集器

   Parallel OldParallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial OldPS MarkSweep)收集器外别无选择(还记得上面说过Parallel Scavenge收集器无法与CMS收集器配合工作吗?)。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNewCMS的组合“给力”。

   直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel ScavengeParallel Old收集器。Parallel Old收集器的工作过程如图六所示。

图六 Parallel Scavenge / Parallel Old收集器运行示意图

1.6 CMS收集器

   CMSConcurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

从名字(包含“Mark Sweep”)上就可以看出,CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:

初始标记(CMS initial mark

并发标记(CMS concurrent mark

重新标记(CMS remark

并发清除(CMS concurrent sweep

   其中,初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过图七可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的时间。

图七 Concurrent Mark Sweep 收集器运行示意图 

   CMS收集器对CPU资源非常敏感。其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。CMS默认启动的回收线程数是(CPU数量+3/ 4,也就是当CPU4个以上时,并发回收时垃圾收集线程不少于25%CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大,如果本来CPU负载就比较大,还分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低了50%,其实也让人无法接受。为了应付这种情况,虚拟机提供了一种称为“增量式并发收集器”(Incremental Concurrent Mark Sweep / i-CMS)的CMS收集器变种,所做的事情和单CPU年代PC机操作系统使用抢占式来模拟多任务机制的思想一样,就是在并发标记、清理的时候让GC线程、用户线程交替运行,尽量减少GC线程的独占资源的时间,这样整个垃圾收集的过程会更长,但对用户程序的影响就会显得少一些,也就是速度下降没有那么明显。实践证明,增量时的CMS收集器效果很一般,在目前版本中,i-CMS已经被声明为“deprecated”,即不再提倡用户使用。

   CMS收集器无法处理浮动垃圾(Floating Garbage),可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。在JDK 1.5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在应用中老年代增长不是太快,可以适当调高参数-XX:CMSInitiatingOccupancyFraction的值来提高触发百分比,以便降低内存回收次数从而获取更好的性能,在JDK 1.6中,CMS收集器的启动阈值已经提升至92%。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。所以说参数-XX:CMSInitiatingOccupancyFraction设置得太高很容易导致大量“Concurrent Mode Failure”失败,性能反而降低。

   还有最后一个缺点,在本节开头说过,CMS是一款基于“标记—清除”算法实现的收集器,如果读者对前面这种算法介绍还有印象的话,就可能想到这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。为了解决这个问题,CMS收集器提供了一个-XX:+UseCMSCompactAtFullCollection开关参数(默认就是开启的),用于在CMS收集器顶不住要进行FullGC时开启内存碎片的合并整理过程,内存整理的过程是无法并发的,空间碎片问题没有了,但停顿时间不得不变长。虚拟机设计者还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction,这个参数是用于设置执行多少次不压缩的Full GC后,跟着来一次带压缩的(默认值为0,表示每次进入Full GC时都进行碎片整理)。

本文来自网易实践者社区,经作者齐红方授权发布。